Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Recent years have seen a surge in interest in building deep learning-based fully data-driven models for weather prediction. Such deep learning models, if trained on observations can mitigate certain biases in current state-of-the-art weather models, some of which stem from inaccurate representation of subgrid-scale processes. However, these data-driven models, being over-parameterized, require a lot of training data which may not be available from reanalysis (observational data) products. Moreover, an accurate, noise-free, initial condition to start forecasting with a data-driven weather model is not available in realistic scenarios. Finally, deterministic data-driven forecasting models suffer from issues with long-term stability and unphysical climate drift, which makes these data-driven models unsuitable for computing climate statistics. Given these challenges, previous studies have tried to pre-train deep learning-based weather forecasting models on a large amount of imperfect long-term climate model simulations and then re-train them on available observational data. In this article, we propose a convolutional variational autoencoder (VAE)-based stochastic data-driven model that is pre-trained on an imperfect climate model simulation from a two-layer quasi-geostrophic flow and re-trained, using transfer learning, on a small number of noisy observations from a perfect simulation. This re-trained model then performs stochastic forecasting with a noisy initial condition sampled from the perfect simulation. We show that our ensemble-based stochastic data-driven model outperforms a baseline deterministic encoder–decoder-based convolutional model in terms of short-term skills, while remaining stable for long-term climate simulations yielding accurate climatology.more » « less
-
null (Ed.)This paper describes an implementation of the Combined Hybrid-Parallel Prediction (CHyPP) approach of Wikner et al. (2020) on a low-resolution atmospheric global circulation model (AGCM). This approach combines a physics-based numerical model of a dynamical system (e.g., the atmosphere) with a computationally efficient type of machine learning (ML) called reservoir computing (RC) to construct a hybrid model. This hybrid atmospheric model produces more accurate forecasts of most atmospheric state variables than the host AGCM for the first 7-8 forecast days, and for even longer times for the temperature and humidity near the earth's surface. It also produces more accurate forecasts than a purely ML-based model, or a model that combines linear regression, rather than ML, with the AGCM. The potential of the approach for climate research is demonstrated by a 10-year long hybrid model simulation of the atmospheric general circulation, which shows that the hybrid model can simulate the general circulation with substantially smaller systematic errors and more realistic variability than the host AGCM.more » « less
An official website of the United States government
